On-Line Algorithms for the k-Server Problem

Richard Borie
University of Alabama
June 27, 2005

Concepts: a quick review

- On-line algorithms are interactive
 - Must process each request before knowing future
- An on-line algorithm A is c-competitive if
 - For all sequences $R = (R_1, R_2, R_3, \ldots, R_m)$ of requests,
 \[\text{cost}_A(R) \leq c \times \text{cost}_{OPT}(R) + b \]
 - OPT is an optimal off-line algorithm
 - b is a constant that is independent of R (usually 0)
- Adversary
 - Knows how our algorithm works, and always issues requests $R_1, R_2, R_3, \ldots, R_m$ that will make our algorithm perform as poorly as it possibly can

Examples: a quick review

- Rent or buy?
 - $(2 - r/p)$-competitive on-line algorithm
 - r: cost to rent, p: cost to purchase, $r < p$
- Paging
 - Least Recently Used (LRU) is k-competitive
 - k: number of pages that can fit in the cache
- Self-organizing list
 - Move To Front (MTF) is 4-competitive
- Bin packing
 - First Fit (FF) is 2-competitive

Today's example: k-server problem

- Complete graph G with edge weights that satisfy the triangle inequality:
 \[w(x,z) \leq w(x,y) + w(y,z) \]
- Initially k servers reside at k vertices
- Each request occurs at some vertex v
- If no server is currently at v, one of the servers must move to v
- Generalization of paging problem
- Partially accurate model: requesting a plumber

Move Nearest Server heuristic

- Greedy heuristic (Move Nearest Server) is not c-competitive for any constant c
 - Consider complete graph on vertices $\{a,b,c\}$
 - Let $k=2$, $w(a,b)=2$, $w(a,c)=3$, and $w(b,c)=1$
 - Let $R=(a,b,c,b,c,b,c,\ldots)$ with $|R|=m$
 - $\text{cost}_{\text{Greedy}}(R) \geq m-2$
 - $\text{cost}_{\text{OPT}}(R) \leq 4$
 - Ratio $\geq (m-2)/4$ is unbounded

Not c-competitive when $c<k$

- For all k, there can be no c-competitive on-line algorithm for the k-server problem for any $c<k$
- Sketch of proof:
 - Suppose algorithm A is c-competitive
 - Let G be a graph with $k+1$ vertices
 - Adversary makes requests to keep A busy
 - Let R_i be vertex in G with no server initially
 - For $2 \leq i \leq m$, let $R_i = \text{vertex that was abandoned to service the previous request } R_{i-1}$
Sketch of proof (continued)

- For each vertex $x \neq R_1$, define algorithm B_x
 - B_x starts with servers at each vertex except x
 - Upon each request R_i, B_x operates as follows:
 - If vertex R_i is vacant, move server from R_{i-1} to R_i
 - Claim: if $x \neq z$, then at no time do B_x and B_z
 ever have the same vacant vertex
 - Basis: obviously true before request R_1
 - Induction: suppose true before R_i, so at most
 one B_x has vertex R_i vacant. Hence only this one
 B_x moves in response to request R_i and so only
 this one B_x will have R_{i-1} vacant after request R_i

Sketch of proof (continued)

- Hence $\Sigma_{x \neq R_1} \text{cost}_{B_x} (R) \leq \Sigma_{2 \leq i \leq m} w(R_{i-1}, R_i)$
- But $\Sigma_{2 \leq i \leq m} w(R_{i-1}, R_i) \leq \text{cost}_A (R)$
- So $\Sigma_{x \neq R_1} \text{cost}_{B_x} (R) \leq \text{cost}_A (R)$
- Note: $\min_{x \neq R_1} \text{cost}_{B_x} (R) \leq \text{cost}_A (R)/k$
- Finally $\text{cost}_A (R) \geq k*\text{cost}_{B_x} (R) \geq k*\text{cost}_{\text{OPT}} (R)$
- This proof is non-constructive (existential)
 - We don’t know which B_x yields the minimum cost,
 and we didn’t state how to construct OPT

Sketch of proof (continued)

- What if we are not permitted to change the
 initial location of the k servers?
 - $\text{cost}_{B_x} (R) \leq \text{cost}_A (R)/k + w(R_1, x)$
 - $\text{cost}_A (R) \geq k*\text{cost}_{B_x} (R) - k*w(R_1, x)$
 - So only the additive constant is affected

[End of proof]

k-Server Conjecture

- For all k, there exists a k-competitive
 algorithm for the k-server problem???
- Question was first posed in about 1988,
 and its status remains unresolved
- Probably the most important open problem
 in on-line algorithms
- In the remainder we discuss some progress
 made toward solving this problem

2-competitive for 2 servers

- There exists a 2-competitive algorithm for
 the 2-server problem
 - Result originally obtained by
 Manasse/McGeoch/Sleator in 1988
 - We describe a simpler and more general idea
 used by Chrobak/Larmore in 1990
 - Extend the graph to a metric space
 - Add virtual points that are not exactly at any vertex
 - Each such point is defined by its distance to each vertex
 - Maintain both an actual location and a virtual
 location for each server

2-server algorithm (continued)

- Suppose two servers are at virtual locations (a,b),
 and the next request occurs at vertex c
 - If $w(a,b) + w(b,c) = w(a,c)$ then
 - Server b is between a and c
 - Move server at b to c, and do not move server at a
 - If $w(a,b) + w(a,c) = w(b,c)$ then
 - Vertex a is between b and c
 - Move server at a to c, and do not move server at b
 - Otherwise...
2-server algorithm (continued)

- Recall two servers are at virtual locations \(\{a, b\}\), and the next request occurs at vertex \(c\).
- Add a new virtual point \(d\) such that:
 - \(w(d, a) = \frac{w(a, b) + w(a, c) - w(b, c)}{2}\)
 - \(w(d, b) = \frac{w(a, b) + w(b, c) - w(a, c)}{2}\)
 - \(w(d, c) = \frac{w(a, c) + w(b, c) - w(a, b)}{2}\)
- For all \(x \notin \{a, b, c\}\), define:
 - \(w(d, x) = \min\{w(d, a) + w(a, x), w(d, b) + w(b, x), w(d, c) + w(c, x)\}\)
- This still obeys the triangle inequality.

k-competitive for \(k\) servers if
graph has exactly \(k+1\) vertices

- There exists a \(k\)-competitive algorithm for the \(k\)-server problem when the graph \(G\) has exactly \(k+1\) vertices.
 - Result obtained by Manasse/McGeoch/Sleator in 1988.
(2k-1)-competitive for k servers

- For all k, there exists a (2k-1)-competitive algorithm for the k-server problem
 - Result obtained by Koutsoupias/Papadimitriou in 1994
 - Idea is called the Work Function Algorithm
 - Remember all previous requests (up to the current request)
 - Dynamic programming can be used to compute the optimal off-line solution for the sequence of all previous requests

Work Function Algorithm (continued)

- Consider an optimum off-line algorithm that starts with servers at locations $S_0 \subseteq V$, where $|S_0| = k$, and then handles the first i requests $R_1, R_2, ..., R_i$
- For each $S \subseteq V$ with $|S| = k$, let the work function $f_i(S) = \text{cost}_{OPT}(R_1, R_2, ..., R_i) + \text{[minimum cost needed to move servers from final locations to S]}$
- Let S_{i-1} denote the set of server locations before serving request R_i. The work function algorithm serves request R_i by moving a server from whichever $x \in S_{i-1}$ minimizes this sum:

 $f_i(S_i) + w(x, R_i), \text{ where } S_i = S_{i-1} - \{x\} \cup \{R_i\}$

Summary

- k-server problem yields k-competitive on-line algorithms for each of these special cases:
 - When $k = 2$
 - When every $w(x,y) = 1$
 - When $|V| = k+1$
 - When the underlying graph is obtained from a tree

- (2k-1)-competitive on-line algorithm exists for arbitrary graphs
- Conjecture: k-competitive on-line algorithm exists for arbitrary graphs???