Recognition of Prime Numbers in Polynomial Time

Richard Borie
University of Alabama
July 4, 2005

The problem

- Input: Positive integer n
- Size of input: \(b = \lg n \) (# bits)
- Question: Is \(n \) prime or composite?
- Note: Pseudo-polynomial-time algorithms are easy to find
 - Polynomial in \(n \)
 - Exponential in \(b \)

Some brief history

- Listed as one of 12 important problems having unknown complexity
- Complexity status is resolved
 - "PRIMES is in P", Agrawal/Kayal/Saxena, 2002
 - Algorithm runs in \(O^{*}(b^{12}) = O(b^{12+o(1)}) \) time

High-level view of algorithm (part 1)

- Find the smallest prime \(r \) such that
 - \(n \) is not divisible by any of 2, 3, ..., \(r \)
 - \(r-1 \) has a prime factor \(q \geq 2 \sqrt{r \lg n + 2} \)
 - \(r^{p-1}\) \(\not= 1 \mod r \)
- If no such \(r \) exists then \(n \) is composite
- Otherwise proceed to next step

High-level view of algorithm (part 2)

- For each \(a \) in \(1 \leq a \leq 2 \sqrt{r \lg n + 1} \)
 - Verify that \((x+a)^p = (x^p+a) \mod n \) \mod \(x^{r-1} \)
 - Note: these are polynomials over variable \(x \)
- If any condition fails then \(n \) is composite
- Otherwise proceed to next step

High-level view of algorithm (part 3)

- For each \(p \) in \(2 \leq p \leq \lg n \)
 - Compute \(m = \text{floor}(n^{1/p}) \)
 - Verify that \(m^p \neq n \)
- If any condition fails then \(n \) is composite
- Otherwise \(n \) is prime
What remains?

- Proof of correctness
 - Algorithm always terminates
 - Algorithm always answers correctly
 - composite or prime
- Analysis
 - How to implement efficiently
 - Show running time is $O(b^{12}) = O(b^{12+o(1)})$
 - Actually $O(b^{12} \log^k b)$ time for some constant k

Recall: High-level view of algorithm (part 1)

- Find the smallest prime r such that
 - n is not divisible by any of 2, 3, ..., r
 - $r-1$ has a prime factor $q \geq 2 \sqrt{r \log n} + 2$
 - $n^{(r-1)/q} \neq 1 \pmod{r}$
- If no such r exists then n is composite
- Otherwise proceed to next step

Medium-level view of algorithm (part 1a)

- Try successive values of $r = 2, 3, 4, 5, ...$
- Sufficient to consider only $O(b^6)$ values of r
 - Justification uses techniques from abstract algebra and number theory
- By the time $O(b^6)$ values of r are considered, one of the following occurs:
 - We find a value of r that satisfies the stated conditions, or
 - We find a value of r that is a divisor of n, in which case we know that n is composite

Medium-level view of algorithm (part 1b)

- For each value of r that is considered
 - Compute $\gcd(n, r)$ by Euclid's algorithm in $O(1)$ time
 - Factor r and $r-1$ by brute force in $O^{(\sqrt{r})} = O^{(b^3)}$ time
 - Let q denote the largest factor of $r-1$
 - Compute $n^{(r-1)/q} \pmod{r}$ by repeated squaring in $O(1)$ time
- Total time over all $O(b^6)$ values of r is $O(b^6) \times O^{(b^3)} = O^{(b^9)}$

Recall: High-level view of algorithm (part 2)

- For each a in $1 \leq a \leq 2 \sqrt{r \log n} + 1$
 - Verify that $(x+a)^n = (x^n+a) \pmod{n} \pmod{x^{r-1}}$
 - Note: these are polynomials over variable x
- If any condition fails then n is composite
- Otherwise proceed to next step

Example of algorithm computation (part 2)

- Example
 - Suppose $n=65$, $r=7$, $a=2$
 - $(x+2)^{65} = (2x^6+2x^5+53x^4+49x^3+14x^2+52x+6) \pmod{65} \pmod{x^{7-1}}$
 - $(x^{55}+2) = (x^2+2) \pmod{65} \pmod{x^{7-1}}$
 - $(2x^4+2x^5+53x^4+49x^3+14x^2+52x+6) \neq (x^2+2) \pmod{65} \pmod{x^{7-1}}$
 - So 65 is composite
Medium-level view of algorithm (part 2a)

• Consider only $O(\sqrt[4]{\log n}) = O(b^3 \cdot b) = O(b^4)$ values of a

 - If any condition fails then n is composite

 • Justification uses techniques from abstract algebra and number theory

 - If all conditions succeed then n is either prime or some power of a prime

 • Again, justification uses techniques from abstract algebra and number theory

Medium-level view of algorithm (part 2b)

• For each value of a that is considered

 - Compute $(x+a)^n \pmod{n} \pmod{x^r-1}$ by repeated squaring

 - There are $O(\log n) = O(b)$ squarings, and each squaring can be performed via FFT

 - Each squaring multiplies polynomials with degree $< r$; hence FFT requires $O(r \log r) = O(b^3)$ scalar products

 - Each scalar product involves coefficient values $\cdot n$, so it can be done using FFT in $O((\log n) = O(b)$ time

• Total time over all $O(b^4)$ values of a is $O(b^4) \cdot O(b) \cdot O^*(b^6) \cdot O^*(b) = O^*(b^{12})$

Recall: High-level view of algorithm (part 3)

• For each p in $2 \leq p \leq \log n$

 - Compute $m = \text{floor}(n^{1/p})$

 - Verify that $m^p \neq n$

• If any condition fails then n is composite

• Otherwise n is prime

Medium-level view of algorithm (part 3a)

• Consider only $O(\log n) = O(b)$ values of p

 - Compute $m = \text{floor}(n^{1/p})$ using numerical analysis techniques

 • Variation of Newton-Raphson algorithm for finding the solution to equation $x^p - n = 0$

 - Uses derivatives (slopes) to approximate a solution

 • Takes $O(\log n) = O(b)$ iterations to converge

 • Each iteration takes $O^*(b^2)$ time for arithmetic operations

 - Also compute m^p by repeated squaring

 • $O(\log p) = O^*(1)$ iterations, each taking $O^*(b)$ time

Medium-level view of algorithm (part 3b)

• Total time over all $O(b)$ values of p is $O(b) \cdot O^*(b^2) = O^*(b^3)$

• If $n = m^p$ for some $m \geq 2$, $p \geq 2$ then algorithm correctly reports that n is composite

• Otherwise algorithm correctly reports that n is prime

• Finally, total time for entire algorithm is $O^*(b^{12})$, due to dominant cost in part 2

More recent history

• Improved proof of correctness and analysis for Agrawal et al.’s algorithm

 - Algorithm runs in $O^*(b^{10.5}) = O(b^{10.5+o(1)})$ time

• Faster algorithm

 - “Primality Testing with Gaussian Periods”, Lenstra/Pomerance, 2003

 - Algorithm runs in $O^*(b^6) = O(b^6+o(1))$ time
Opportunity for volunteers

• Select one (or more) of the loose ends in medium-level description of algorithm
 - Euclid’s algorithm
 - Repeated squaring
 - FFT for multiplying scalars
 - Integer variation of Newton-Raphson method
 - Correctness of compositeness in part 1
 - Correctness of compositeness in part 2
 - Correctness of primality at the end of part 3

• Provide further explanation
 - Missing pieces of algorithm, proof of correctness, and/or analysis details