An Optimal Algorithm for Pursuit-Evasion on a Tree

Richard Borie
University of Alabama
August 1, 2005

Recall: the problem
• Suppose the graph is a tree
• All robots, edges, and vertices have unit width
 - \(g(e)=1\) and \(g(v)=1\)
• Initial robot locations are arbitrary
• Goal: minimize the number of robots needed to clear the tree of all evaders

Recall: the problem (cont.)
• Algorithm 1 (which was discussed last time) is 2-approximate and runs in \(O(n)\) time

Recall: some critical trees
• \(T_1\) is a tree with 2 vertices and 1 edge
• \(T_2\) is a star with 4 vertices and 3 edges
• For \(r \geq 2\), \(T_r\) is built from three copies of \(T_{r-1}\) by fusing together one leaf from each copy
• For \(r \geq 2\), \(T_r\) is the smallest tree that requires \(r\) robots
 • Each \(T_r\) has \(n = 3^{r-1} + 1\) vertices
 • The number of robots required for any tree with \(n\) vertices is \(r \leq 1 + \log_3(n-1)\), so \(r = O(\lg n)\)

Recall: some critical trees (cont.)
• If \(T\) can be cleared by \(r\) robots, then \(T\) can be cleared by \(r\) robots in such a way that at any given time, all robots lie along a common path
• \(T\) can be cleared by \(r\) robots iff \(T\) contains a path \(P\) such that splitting each degree-\(d\) vertex along \(P\) into \(d\) degree-1 vertices yields only trees that can be cleared by \(r-1\) robots
• Algorithm 1 (which was discussed last time) is 2-approximate and runs in \(O(n)\) time

Recall: a few other facts
• If \(T\) can be cleared by \(r\) robots, then \(T\) can be cleared by \(r\) robots in such a way that at any given time, all robots lie along a common path
• \(T\) can be cleared by \(r\) robots iff \(T\) contains a path \(P\) such that splitting each degree-\(d\) vertex along \(P\) into \(d\) degree-1 vertices yields only trees that can be cleared by \(r-1\) robots
• Algorithm 1 (which was discussed last time) is 2-approximate and runs in \(O(n)\) time

Creating an optimal algorithm
• Label each vertex \(v\) with a subset \(S(v) \subseteq \{1,2,...,r\}\) where \(r\) is the number of robots
 - Note: \(r = O(\lg n)\)
• The intuition is that when robot number \(\min(S(v))\) visits vertex \(v\):
 - Robot numbers \(\{\min(S(v))+1,...,\max(S(v))\}\) will be located within the subtree rooted at \(v\)
 - Any robots numbered larger than \(\max(S(v))\) must be located at ancestors of \(v\)

Creating an optimal algorithm (cont.)
• Also label each edge \(e\) with the robot number \(L(e) \in \{1,2,...,r\}\) that will clear edge \(e\)
• If robot \(i\) clears only one edge beneath \(v\), then it might be possible to extend robot \(i\)'s path upward along the edge \((v,\text{parent}(v))\)
• If robot \(i\) clears exactly two edges beneath \(v\), then it might be possible to merge these two paths at vertex \(v\)
• If robot \(i\) clears three or more edges beneath \(v\), then none of these paths will be extended or merged, and a higher-numbered robot will clear the edge \((v,\text{parent}(v))\)
Algorithm 2

- Perform a post-order traversal of T
 - Choose an arbitrary root vertex
- If v is a leaf then
 - S(v)← {1}
 - If v ≠ root(T) then L(v,parent(v)) ← 1
- Otherwise v has k ≥ 1 children c₁,...,cₖ
 - Let x ← the largest value that appears in at least two of the S(cᵢ), or 0 if no such value exists
 - Let y ← max(min(S(cᵢ))), that is, the largest value that is the minimum of any S(cᵢ)

Algorithm 2 (cont.)

- If (x < y) then
 - // attempt to extend path of robot y upward
 - S(v) ← ∪ S(cᵢ) - {1,2,...,y-1}
 - If v ≠ root(T) then
 - L(v,parent(v)) ← y

Algorithm 2 (cont.)

- If (x = y and this value appears in exactly two of the S(cᵢ) and is the minimum in both sets), then
 - // merge the two paths labeled y
 - Let S' = ∪ S(cᵢ) - {1,2,...,y-1}
 - If v=root(T) then
 - S(v) ← S'
 - Otherwise
 - Let z ← the smallest positive integer that is not in S'
 - S(v) ← S' - {1,2,...,z-1} ∪ {z}
 - L(v,parent(v)) ← z

Algorithm 2 (cont.)

- Finally, if (x > y) or if (x = y and the conditions in the preceding case do not hold), then
 - // no paths can be extended or merged
 - Let z ← the smallest integer that exceeds x and that is not in ∪ S(cᵢ)
 - S(v) ← ∪ S(cᵢ) - {1,2,...,z-1} ∪ {z}
 - If v ≠ root(T) then
 - L(v,parent(v)) ← z

Example 1: tree T₄

- Algorithm 1 yields 4 robots
- Algorithm 2 yields 4 robots

Example 2: T₄ minus one leaf

- Algorithm 1 yields 4 robots
- Algorithm 2 yields 3 robots
Example 3

- Algorithm 1 yields 5 robots
- Algorithm 2 yields 3 robots

Correctness (sufficiency)

- T can be cleared using \(r = \max(S(\text{root}(T))) \) robots
- First locate the path \(P \) along which robot number \(r \) moves (using the edge labels, \(L \))
- Begin by sending robot \(r \) to an endpoint of \(P \)
- As robot \(r \) visits each vertex \(v \) along \(P \), robots \(\{1, 2, \ldots, r-1\} \) recursively clear each subtree of \(v \)
- Also, when robot \(r \) visits the vertex \(v \) of \(P \) that is nearest to \(\text{root}(T) \), robots \(\{1, 2, \ldots, r-1\} \) recursively clear the portion of \(T \) that lies above \(v \), unless of course \(v = \text{root}(T) \)

Correctness (optimality)

- Algorithm 2 maintains the following invariant at every vertex \(v \):
 - Consider any feasible set of robots that satisfies the same conditions that \(S(v) \) does
 - Robot numbers \((\min(S(v)) + 1, \ldots, \max(S(v))) \) are located within the subtree rooted at \(v \)
 - Any robots numbered above \(\max(S(v)) \) are located at ancestors of \(v \)
 - Among all possible such sets that can clear the subtree rooted at \(v \)
 - When sorted into descending order, \(S(v) \) is lexicographically the smallest

Analysis

- Algorithm 2 runs in \(O(n \times r) \) time, where recall \(r = O(\lg n) \)
 - This is because the time needed to determine \(S(v) \) at each node \(v \) is proportional to the product of \(r \) and the number of children of \(v \)
 - Assuming that each set \(S(v) \) is maintained as a sorted doubly-linked list, so each union can be performed in \(O(r) \) time

More careful analysis

- Algorithm 2 runs in \(O(n) \) time, independently of \(r \)
 - Each union operation on two sets can be implemented to require at most \(m \) comparison steps, where \(m \) is the lesser of the maxima of the two sets whose union is being performed
 - Such a union is destructive, that is, it might destroy the two sets whose union is being taken
 - An induction shows that for \(1 \leq m \leq r \), the number of unions that involve two sets that each contain a value \(m \) or greater is at most \(2n/2^m \)

More careful analysis (cont.)

- Finally, the total time for all the unions is at most proportional to:
 \[
 \sum_{1 \leq m \leq r} [m \times 2n/2^m] \\
 \leq \sum_{1 \leq m \leq r} \sum_{i=1}^{m} 2n/2^m \\
 \leq \sum_{1 \leq m \leq r} \sum_{i=1}^{m} 2n/2^m \\
 \leq \sum_{1 \leq m \leq r} 4n/2^i \\
 \leq 4n \\
 = O(n)
 \]
Another result (next week)

- The following variation of the pursuit-evasion problem is NP-complete
 - Input:
 - Arbitrary graph $G = (V,E)$
 - Even if G is restricted to be a treewidth-2 graph (series-parallel graph)
 - Edge widths $g(e) \geq 1$, vertex widths $g(v) \geq 1$
 - Number of available robots, r
 - Output:
 - Can graph G be cleared using at most r robots?